ON HOPF ALGEBRAS AND RIGID MONOIDAL CATEGORIES

BY

K.-H. ULBRICH[†]

Institute of Mathematics, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan

ABSTRACT

Let $\mathscr C$ be a neutral Tannakian category over a field k. By a theorem of Saavedra Rivano there exists a commutative Hopf algebra A over k such that $\mathscr C$ is equivalent to the category of finite dimensional right A-comodules. We review Saavedra Rivano's construction of the bialgebra A and show that A has still an antipode if the symmetry condition on the monoidal structure of $\mathscr C$ is removed.

Introduction

Let k be a field, \mathscr{C} a k-linear, abelian category which is essentially small, and let $\omega \colon \mathscr{C} \to \mathscr{V}ec_f(k)$ be a k-linear, exact and faithful functor from \mathscr{C} into the category of finite dimensional k-vector spaces. By [3], p. 136, 2.6.3, there exists a k-coalgebra A such that ω factors through a k-linear equivalence $\mathscr{C} \to \mathscr{C}omod_f(A)$ of \mathscr{C} with the category of finite dimensional right A-comodules. If in addition \mathscr{C} has a rigid, symmetric monoidal structure (i.e. a symmetric monoidal structure such that every object has a dual object), and if ω is a symmetric monoidal functor, then A is a commutative Hopf algebra; it represents the functor

$$(1) T \mapsto \operatorname{Aut}^{\otimes}(\omega \otimes T)$$

which associates to a commutative k-algebra T the group of monoidal natural automorphisms of $\omega \otimes T$: $\mathscr{C} \to \mathcal{M}od(T)$, $X \mapsto \omega(X) \otimes T$, see [2], thm. 2.11, [3], II, 4.1.

[†] Supported by a grant from JSPS.

Current address: Département de Mathématiques, Université Paris-Nord, Villetaneuse, France.

Received July 23, 1989

Suppose now that we drop from the above assumptions the symmetry condition on the monoidal structure of \mathscr{C} . Then A is still a bialgebra, which however does no longer represent the functor (1), because A may be noncommutative.

The aim of this note is to show that A is in fact still a Hopf algebra by deriving the existence of an antipode of A from the dual object functor of \mathscr{C} .

1. We first collect some facts on dual objects in monoidal categories, [1], [3]. Let \mathscr{C} be a monoidal category, with product \otimes and neutral object \mathscr{K} . Let $X \in \mathscr{C}$. An object X^* of \mathscr{C} is said to be a (left) dual of X if there exist morphisms

$$ev: X^* \otimes X \to \mathcal{A}, \quad \pi: \mathcal{A} \to X \otimes X^*,$$

satisfying

$$id = (1 \otimes ev)(\pi \otimes 1): X \to X \otimes X^* \otimes X \to X,$$
$$id = (ev \otimes 1)(1 \otimes \pi): X^* \to X^* \otimes X \otimes X^* \to X^*.$$

Given such morphisms ev and π , it is easy to see that for all $Y, Z \in \mathscr{C}$ the maps

$$\operatorname{Hom}(Z \otimes X, Y) \to \operatorname{Hom}(Z, Y \otimes X^*), \quad f \mapsto (f \otimes 1)(1 \otimes \pi),$$

 $\operatorname{Hom}(Z, Y \otimes X^*) \to \operatorname{Hom}(Z \otimes X, Y), \quad g \mapsto (1 \otimes ev)(g \otimes 1)$

are inverse to each other. Hence the functor $\mathscr{C} \to \mathscr{C}$, $Y \mapsto Y \otimes X^*$, is a right adjoint of $\mathscr{C} \to \mathscr{C}$, $Z \mapsto Z \otimes X$. Taking $Y = \mathscr{K}$ shows X^* is uniquely determined up to isomorphism. More precisely, suppose that $(\overline{X}^*, \overline{ev}, \overline{\pi})$ is another dual of X. Define

$$\tau = (ev \otimes 1)(1 \otimes \overline{\pi}): X^* \to \overline{X}^*.$$

Then τ is an isomorphism and

(2)
$$ev = \overline{ev}(\tau \otimes 1), \quad \overline{\pi} = (1 \otimes \tau)\pi.$$

Suppose now that $\mathscr C$ is rigid monoidal, i.e. every object $X \in \mathscr C$ has a dual X^* . Then for any morphism $f: X \to Y$ in $\mathscr C$ we can define

$$f^* = (ev \otimes 1)(1 \otimes f \otimes 1)(1 \otimes \pi)$$
: $Y^* \to X^*$.

This gives rise to a contravariant function $\mathscr{C} \to \mathscr{C}, X \mapsto X^*$, which is called the dual object functor of \mathscr{C} . Let $\omega : \mathscr{C} \to \mathscr{D}$ be a monoidal functor from \mathscr{C} into a rigid monoidal category \mathscr{D} . Then $\omega(X^*)$ is naturally a dual object for $\omega(X)$. The corresponding τ is given by

$$\tau_X = (ev \otimes 1)(1 \otimes \omega(\pi)): \omega(X)^* \to \omega(X^*);$$

 τ_X is natural in X and, in particular, satisfies (2).

EXAMPLE. Let k be a commutative ring, $\mathscr{C} = \mathcal{M}od(k)$, and $\otimes = \bigotimes_k$. Then $P \in \mathscr{C}$ has a dual object if and only if P is finitely generated and projective, [1], prop. 2.6. It follows that the same holds for $\mathscr{C} = \mathscr{C}omod(A)$, the category of right A-comodules for a Hopf k-algebra A. In fact, if $V \in \mathscr{C}omod(A)$ is finitely generated and projective over k, then $V^* = \operatorname{Hom}_k(V, k)$ has a right A-comodule structure $V^* \to V^* \otimes A \cong \operatorname{Hom}_k(V, A)$ defined by

$$\left(\sum g_{(0)} \otimes g_{(1)}\right)(x) = \sum g(x_{(0)})\lambda(x_{(1)}), \quad x \in V, \quad g \in V^*,$$

where $\lambda: A \to A$ is the antipode of A. The canonical maps $ev: V^* \otimes V \to k$ and $\pi: k \to V \otimes V^*$, $1 \mapsto$ projective coordinate system, are then A-collinear. If $\lambda^2 = id$, then also $V \stackrel{\sim}{\to} V^{**}$ is A-collinear.

2. In the following let $\mathscr{C} = (\mathscr{C}, \otimes, \mathscr{K})$ be a monoidal category, which is essentially small (i.e. equivalent to a small category). The bialgebra A mentioned in the introduction can be obtained more generally from any monoidal functor

$$\omega \colon \mathscr{C} \to \mathscr{P}(k)$$

from \mathscr{C} into the category of finitely generated, projective modules over a commutative ring k. It may be defined as follows, cf. [3], p. 101. For any k-module M let $\omega \otimes M$ denote the functor $\mathscr{C} \to \mathcal{M}od(k)$, $X \mapsto \omega(X) \otimes M$, and $\operatorname{Hom}(\omega, \omega \otimes M)$ the k-module of all natural transformations $\omega \to \omega \otimes M$. It follows from [3], p. 99, 1.3.2.1, that the functor

$$\mathcal{M}od(k) \rightarrow \mathcal{E}ns$$
, $M \mapsto \operatorname{Hom}(\omega, \omega \otimes M)$,

is representable. Choose a representing k-module A and natural isomorphisms

$$\rho_M$$
: $\operatorname{Hom}_k(A, M) \xrightarrow{\sim} \operatorname{Hom}(\omega, \omega \otimes M), \qquad M \in \mathcal{M}od(k).$

Set $\alpha = \rho_A(id_A)$: $\omega \to \omega \otimes A$, $d = (\alpha \otimes 1)\alpha$: $\omega \to \omega \otimes A \otimes A$, and let $e: \omega \to \omega \otimes k$ be the canonical isomorphism. Then the coalgebra structure $\delta: A \to A \otimes A$ and $\epsilon: A \to k$ is given by

$$\rho_{A\otimes A}(\delta)=d, \quad \rho_k(\varepsilon)=e,$$

and one obtains a functor $\mathscr{C} \to \mathscr{C}omod(A)$, $X \mapsto (\omega(X), \alpha_X)$.

For the algebra structure of A, consider the functor

$$\omega^2$$
: $\mathscr{C} \times \mathscr{C} \to \mathscr{P}(k)$, $(X, Y) \mapsto \omega(X) \otimes \omega(Y)$.

It follows from [3], p. 100, 1.3.3.1, that the map

(3)
$$\rho_M^2 : \operatorname{Hom}_k(A \otimes A, M) \to \operatorname{Hom}(\omega^2, \omega^2 \otimes M),$$

defined by $\rho_M^2(\mu)(x \otimes y) = \sum x_{(0)} \otimes y_{(0)} \otimes \mu(x_{(1)} \otimes y_{(1)})$ for all $x \in \omega(X)$, $y \in \omega(Y)$, is an isomorphism. Define homomorphisms $m_{X,Y}$ for $X, Y \in \mathscr{C}$ by

$$m_{X,Y}: \omega(X) \otimes \omega(Y) \cong \omega(X \otimes Y) \stackrel{\alpha}{\to} \omega(X \otimes Y) \otimes A \cong \omega(X) \otimes \omega(Y) \otimes A.$$

This gives an element $m \in \text{Hom}(\omega^2, \omega^2 \otimes A)$ and the multiplication $\mu: A \otimes A \to A$ is the preimage of m under (3). Finally, the unit map $\iota: k \to A$ is defined by

$$i: k \cong \omega(k) \stackrel{\alpha}{\to} \omega(k) \otimes A \cong A.$$

REMARK 1. Let ϕ_A : $\mathscr{C}omod(A) \to \mathscr{M}od(k)$ be the forgetful functor. Obviously, the functor Ω : $\mathscr{C} \to \mathscr{C}omod(A)$ defined above satisfies $\omega = \phi_A \Omega$ as monoidal functors $\mathscr{C} \to \mathscr{M}od(k)$. If (A', Ω') is any other such pair, then $\Omega' = \mathscr{C}omod(\phi)\Omega$ for a uniquely determined bialgebra map ϕ : $A \to A'$.

THEOREM. Suppose that \mathscr{C} is rigid monoidal. Then the k-bialgebra A defined above is a Hopf algebra.

PROOF. For any k-module M and $X \in \mathcal{C}$ we have a canonical isomorphism

(4)
$$\operatorname{Hom}_k(\omega(X), \omega(X) \otimes M) \stackrel{\sim}{\to} \operatorname{Hom}_k(\omega(X)^*, \omega(X)^* \otimes M)$$

since $\omega(X)$ is finitely generated and projective. Furthermore, by Section 1 we have natural isomorphisms

$$\tau_X: \omega(X)^* \to \omega(X^*), \qquad X \in \mathscr{C},$$

compatible with ev and π , (2). For $v \in \text{Hom}(\omega, \omega \otimes M)$ define \tilde{v}_X to be the preimage under (4) of the composite

$$(\tau_X^{-1} \otimes 1) \nu_{X^*} \tau_X : \omega(X)^* \to \omega(X)^* \otimes M.$$

This yields a map l_M : Hom $(\omega, \omega \otimes M) \to$ Hom $(\omega, \omega \otimes M)$, $v \mapsto \tilde{v}$, which is natural in M, and hence corresponds to a k-linear map $\lambda : A \to A$ satisfying $l_M \rho_M = \rho_M \operatorname{Hom}(\lambda, 1)$. We claim that λ is an antipode of A, i.e. $\mu(\lambda \otimes 1)\delta = u\varepsilon = \mu(1 \otimes \lambda)\delta$. Since $\operatorname{Hom}_k(A, A) \cong \operatorname{Hom}(\omega, \omega \otimes A)$, it is enough to show

(5)
$$\sum x_{(0)} \otimes \lambda(x_{(1)}) x_{(2)} = x \otimes 1 = \sum x_{(0)} \otimes x_{(1)} \lambda(x_{(2)})$$

for all $x \in \omega(X)$, $X \in \mathscr{C}$. For the left-hand equation first observe that the following diagram is commutative:

(6)
$$\omega(X)^* \otimes \omega(X) \xrightarrow{\alpha \otimes \alpha} \omega(X)^* \otimes A \otimes \omega(X) \otimes A$$

$$ev \downarrow \qquad \qquad \downarrow 1 \otimes \mu$$

$$k \xrightarrow{\iota} A \xleftarrow{ev \otimes 1} \omega(X)^* \otimes \omega(X) \otimes A$$

as follows from the naturality of α applied to $ev: X^* \otimes X \to \mathcal{A}$. In (6), by abuse of notation, the map $\alpha: \omega(X)^* \to \omega(X)^* \otimes A$ denotes the comodule structure induced from $\omega(X^*)$ via τ_X . If we identify $\omega(X)^* \otimes A \cong \operatorname{Hom}_k(\omega(X), A)$, then

$$\alpha(g)(x) = \sum g(x_{(0)})\lambda(x_{(1)}), \qquad x \in \omega(X), \quad g \in \omega(X)^*.$$

It follows that the canonical isomorphism

$$\operatorname{Hom}_k(\omega(X)^* \otimes \omega(X), A) \xrightarrow{\sim} \operatorname{Hom}_k(\omega(X), \omega(X) \otimes A)$$

transforms (6) into the first equation of (5). However, the same arguments with ev replaced by $\pi: \mathcal{A} \to X \otimes X^*$ give also the second equation of (5), and this completes the proof.

REMARK 2. If the dual object functor $\mathscr{C} \to \mathscr{C}$ is an equivalence, then λ is bijective.

REFERENCES

- 1. P. Deligne, Catégories Tannakiennes, preprint.
- 2. P. Deligne and J. Milne, *Tannakian Categories*, Lecture Notes in Math. 900, Springer-Verlag, Berlin, 1982, pp. 101-228.
- 3. N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Math. 265, Springer-Verlag, Berlin, 1972.